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NUMERICAL MODELING OF THERMOPHYSICAL PROCESSES

IN LASER-BEAM WELDING WITH FORMATION OF A VAPOR CHANNEL

UDC 621.9.048.7:621.375.826A. N. Cherepanov, V. P. Shapeev,

V. M. Fomin, and L. G. Semin

A quasi-two-dimensional mathematical model of laser welding of plates made of a binary alloy with
allowance for metal vaporization and formation of a vapor channel is developed. A difference algo-
rithm and a computer code are designed on the basis of this model. Processes of melting, vaporization,
and solidification of the alloy of butt-welded aluminum plates are considered numerically as an exam-
ple. The shape and depth of the vapor channel and welding bath are calculated for given conditions
of the radiation power and welding velocity. Based on semi-empirical relations and numerical data
obtained, the characteristic size of the dendritic structure of the solidified melt is estimated.

Key words: modeling, laser welding, heat transfer, vaporization, vapor channel, two-phase zone,
dendritic structure.

Introduction. Industrial-scale development of the laser-welding technology makes process engineers seek
for improvement of the weld-joint quality by creating conditions that ensure formation of a finely disperse defect-free
crystal structure, retaining of the initial chemical composition of the joint, and reduction of thermal stresses respon-
sible for origination of cracks inside the welding seam and article deformation. The wide variety of physicochemical
and thermohydrodynamic processes proceeding at high velocities and temperatures hinders their experimental in-
vestigation and development of rational welding regimes. In this case, the most efficient tools are mathematical
modeling and numerical experiments, which, in turn, require adequate mathematical models.

Currently available numerical models take into account only some individual aspects of the sophisticated
processes in the welding bath and in the vicinity of the welding seam without analyzing the mutual influence of these
factors [1–6]. The issues that have not been adequately studied include structure and phase formation, formation
of chemical inhomogeneity in crystallization of multispecies alloys, vaporization of alloying agents in the case of
vapor-channel formation, origination of shrinkage porosity, etc.

A mathematical model of thermophysical processes in the welding bath with allowance for vapor-channel
formation is formulated in the present paper. Melting and crystallization of a binary aluminum alloy are described
under the assumption of quasi-equilibrium in the two-phase zone [7]. Based on the model proposed, the problem
is solved numerically in a quasi-two-dimensional approximation. The characteristic size of the dendritic structure
and the width of the two-phase zone in the region of crystallization are estimated.

1. Formulation of the Problem. We consider a steady process of laser butt-welding of two plates made
of an aluminum alloy. As the thermo- and hydrodynamic processes in the welding region are rather complicated
and have not been studied in detail, we apply some simplifying assumptions to the thermophysical problem at this
stage. We assume that the laser-beam (welding) velocity is constant, the temperature field and the positions of the
phase boundaries in the welding bath are quasi-steady, and the vapor–gas channel is in dynamic equilibrium with
the ambient liquid [2, 6]. In the numerical solution of the quasi-two-dimensional equation of heat transfer in the
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Fig. 1. Layout of the welding bath (section y = 0): 1) solid phase; 2) two-phase zone; 3) liquid
phase; 4) vapor–gas channel; 5) laser-beam axis.

liquid phase, the convective heat transfer caused by heat transfer from the melting region (from the frontal wall of
the channel) to the region of solidification (to the rear wall) [3, 6] is modeled by introducing an effective source of
heat into the equation of thermal balance on the surface of the rear wall of the vapor–gas channel. The vapor is
considered as a transparent medium. The effects of optical breakdown and vapor ionization are ignored.

In the domain considered, we introduce a Cartesian coordinate system in which the laser beam incident onto
a dense joint of the welded plates is motionless, and the plates move with the welding velocity v. The downward
z direction is coaxial with the beam, the x axis is directed along the joint and follows the direction of motion of the
plates, and the y axis is perpendicular to the joint. The origin lies at the beam axis on the upper surfaces of the
plates (Fig. 1). To protect the metal from oxidation, the welded plates are subjected to a neutral gas flow, which
partly entrains metal vapors.

2. Governing Equations and Relations. In the chosen coordinate system, the quasi-steady equations
of heat transfer can be written in the form

ceiv
∂T

∂x
= λi

(∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
; (1)
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κ

c2

∂fl
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)
, Te � T � Tl0,

c3ρ3, Tl0 < T,

(2)

where ci, λi, and ρi are the specific heat, thermal conductivity, and density of the ith phase (the subscripts i = 1,
2, and 3 refer to parameters of the solid, two-phase, and liquid states of the metal, respectively), Tl0 and Te are the
temperatures of the beginning and end of metal solidification, fl is the section (fraction) of the liquid phase in the
two-phase zone, and κ is the latent heat of melting.

We consider welding of plates made of the binary alloy Al + 10% Si (by weight). The equation of state of
the alloy is approximated by the linear function

Tl = TA − βC, (3)

where Tl is the liquidus temperature, TA is the temperature of melting of the pure solvent component, β is the
absolute value of the slope of the liquidus line, and C is the concentration of the alloying agent. The relation
between the concentration C and the liquid-phase section is described by the Sheil equation [7]

C = C0f
k−1
l , (4)

where C0 is the initial concentration of the alloying agent in the alloy considered and k is the distribution coefficient.
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Substituting Eq. (4) into Eq. (3) and taking into account the condition of quasi-equilibrium in the two-phase
zone [T = Tl(C)], we obtain the relation between fl and the temperature T :

T = TA − βC0f
k−1
l . (5)

Differentiating the left and right sides of Eq. (5) with respect to T , we find the value of ∂fl/∂T :

∂fl

∂T
=

1
βC0(1 − k)fk−2

l

. (6)

We assume that welding is performed by radiation of a CO2 laser with a wavelength λ0 = 10.6 µm. The
radiation intensity is described by the normal Gaussian distribution

I(x, y, z) = I0 exp (−2(x2 + y2)/r2
z),

where I0 = 2W/(πr2
z), W is the laser power, and rz is the laser-beam radius at a depth z of the vapor–gas channel

described by the formula [8]

rz =
√

r2
F +

(z − ZF

πrF
λ0

)2

. (7)

Here rF is the laser-beam radius in the focal plane and ZF is the position of the focus with respect to the upper
surfaces of the welded articles. Then, the expression for the power density of radiation absorbed by a surface
element of the vapor–gas channel z = Zc(x, y) can be written as

q(x, y, Z(x, y)) =
2Wabs

πr2
z

exp
(
− 2r2

r2
z

)
, (8)

where Wabs is the total value of the entire multiply absorbed power and rz is determined by Eq. (7).
3. Boundary Conditions. According to the assumptions used in formulating the boundary conditions,

the losses due to radiation absorption by the vapor–gas cloud partly entrained by the neutral gas are ignored; the
gas flow is assumed to be laminar. In this case, the equations on the surface z = 0 in regions of the solid, solidified,
and liquid alloy and in the two-phase region are

λi
∂T

∂z

∣∣∣
z=0

= (αk + αri)
(
T

∣∣∣
z=0

− Tg

)
, i = 1, 2, 3, (9)

where Tg is the temperature of the protective gas, αri = εiσ0(T 2|z=0 + T 2
g )(T |z=0 + Tg) is the radiative component

of heat transfer (εi and σ0 are the reduced emissivity and the Stefan–Boltzmann constant, respectively), αk is the
coefficient of convective heat transfer determined in the form [9]

αk = 0.646 Re1/2 Pr 1/3λg/l; (10)

Re = vgl/νg, Pr = νg/ag, vg is the gas-flow velocity, l is the characteristic length of the cooling zone, and νg, ag, and
λg are the kinematic viscosity, thermal diffusivity, and thermal conductivity of the gas, respectively. A condition
similar to Eq. (9) is also valid on the lower surfaces of the welded plates at z = h.

The zone of laser radiation [on the surface of the vapor channel z = Zc(x, y)] obey the equation

−λ3∇T · n = q · n − Lṁ + δqc, (11)

where ṁ is the mass rate of matter vaporization from a unit surface, which is related to the excess vapor pressure
P (z) necessary to prevent the channel wall from collapsing by the expression ṁ =

√
P (z)ρv, ρv is the vapor density,

L is the specific heat of vaporization of the alloy, q is the absorbed flux of radiation with allowance for secondary
reflections, δ = 0 on the frontal wall of the channel and δ = 1 on the rear wall, and qc is the convective heat flux
transferred from the frontal to the rear wall of the channel, which is determined by the relation qc = c3ρ3vr(T1−T ),
where T1 is the averaged value of temperature on the frontal wall of the channel, and vr is the mean velocity of
the melt in the channel, whose value was estimated in accordance with [6, 10]. In determining the value of Wabs in
Eq. (8), we assume that the power remaining after the first reflection [W1 = (1 − A)W , where A is the absorption
coefficient] is uniformly scattered over the channel surface including the input orifice. In this case, with allowance
for secondary reflections, the power absorbed by the channel walls can be approximately calculated via the effective
absorption coefficient Aeff = A + Ae(1 − A) by the formula
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Wabs = AeffW, (12)

where Ae is the equivalent absorption coefficient for multiply reflected laser radiation. Following [3], we find it by
the formula

Ae = A

∞∑
n=1

( (1 − A)Sb

Sb + Sc

)n

, (13)

where Sb and Sc are the areas of the side surface of the channel and the input orifice, respectively. The boundary
between the liquid phase and the two-phase zone is determined by the liquidus isotherm

T
∣∣∣
z=ξl(x,y)

= Tl0, (14)

and the boundary between the two-phase zone and the solid (initial or solidified) phase is determined by the isotherm
corresponding to the eutectic temperature of the alloy considered:

T
∣∣∣
z=ξe(x,y)

= Te. (15)

The phase-transition boundaries should satisfy the condition of temperature continuity and thermal balance.
To simplify the numerical algorithm, we first consider a quasi-two-dimensional model of heat transfer. For

this purpose, we average Eq. (1) with respect to the y coordinate to obtain the relation

ceiv
∂T

∂x
= λi

(∂2T

∂x2
+

∂2T

∂z2

)
− λi

l2T
(T − Ta), (16)

where lT = 2
√

aiτ is the length of propagation of the heat wave during the time τ = 2rF /v, ai is the thermal
diffusivity of the ith medium, and Ta is the characteristic temperature of the plate outside the averaging domain.

4. Model of Vapor-Channel Formation. In describing laser welding of alloys with rather high radiation
powers, an important and difficult problem is modeling of vapor-channel formation under the action of excess
pressure of metal vapors, including the response pressure (recoil pressure) balancing the capillary force and the
hydrostatic pressure of the melt. In the first approximation, we can determine the shape of this channel by the
isotherm Tsat of melt boiling under standard pressure:

T
∣∣∣
z=Zc

= Tsat. (17)

The channel boundaries are refined by the conditions of thermal balance (12) and equilibrium of pressure
on the channel walls:

P (z) = −σKc + gρ3z, z = Zc. (18)

Here σ is the surface tension of the alloy, Kc is the curvature of the surface Zc, and P (z) is the excess vapor pressure,
which is the sum of the static pressure during surface vaporization Ps(z) and the recoil (response) pressure Pr(z):

P = Ps + Pr. (19)

The value of Kc is determined by the relation

Kc = div
( ∇Zc√

1 + |∇Zc|2
)
. (20)

We write the expression for the saturated vapor pressure in the case of surface vaporization of the jth
substance in the alloy [7]:

Psj = P0jT
−1 exp (Aj − Bj/T ) (21)

(P0j , Aj , and Bj are empirical constants). The saturation pressure of the mixture of vaporized components of the
alloy is determined by the formula

Ps =
1∑

j=0

0.01CjPsj , (22)
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where Cj is the molar concentration of the jth component of the alloy (j = 0, 1). According to [10], we assume that
Pr linearly depends on the pressure Ps: Pr = bPs. Assuming further that the vapor is an ideal gas, which obeys
the Clapeyron–Mendeleev equation, we obtain the expressions

ρj =
µj

RT 2
exp

(
Aj − Bj

T

)
(23)

for the density of the vapor of the jth component and

ρv =
1∑

j=0

0.01Cj
µj

RT 2
exp

(
Aj − Bj

T

)
(24)

for the mixture (µj is the molar weight).
The greatest excess pressure is reached at the channel bottom:

Pmax = σ/rc + ρ3gZc,max (25)

(rc is the radius of curvature of the bottom, which is determined by the semi-circumference approximating the
surface z = Zc at the point of the maximum depth of the channel Zc,max). The free upper boundary of the liquid
bath z = Zw(x, y) relates the surface of the vapor channel Zc with the liquidus Zl. The equilibrium of the surface
Zw is described by an equation similar to Eq. (18):

P = −σ div
( ∇Zw√

1 + (∇Zw)2

)
− ρ3gZw + B. (26)

Here B is a constant characterizing the field of intrinsic stresses, which is determined together with the constants
of integration of Eq. (26) from the following boundary conditions:

— in the region of melting and vaporization (x < 0),

Zw

∣∣∣
x=x−

c

= Zc

∣∣∣
x=x−

c

= 0, Z ′
c

∣∣∣
x=x−

c

= Z ′
w

∣∣∣
x=x−

c

, Zw

∣∣∣
x=x−

e

= 0; (27)

— in the region of vaporization and crystallization (x > 0),

Zw

∣∣∣
x=x+

c

= Zc

∣∣∣
x=x+

c

= 0, Z ′
w

∣∣∣
x=x+

c

= Z ′
c

∣∣∣
x=x+

e

, Z ′
w

∣∣∣
x=x+

e

= 0. (28)

Here x−
c and x+

c are the coordinates of the points of intersection of the channel boundaries with the surface z = 0;
x−

e and x+
e are the coordinates of the points of intersection of the melting-region boundaries with the surface z = 0

and of the solidification-region boundary with the weld bed, respectively; the superscripts minus and plus refer to
the left and right boundaries with respect to the z axis, respectively.

Equations (16), (18), and (26) with allowance for relations (2), (6), (9)–(15), (17), (19)–(25), (27), and (28)
were solved numerically by the finite-difference method.

5. Brief Description of the Numerical Algorithm. In the plane of the section of the welding region
considered (see Fig. 1), we choose a computational domain G, whose form at the first stage of the computations
(without the vapor channel and the weld bed from the solidified metal) is a rectangle with the sides z = 0, z = h,
x = −l1, and x = l2, where l1 and l2 are the distances from the left and right boundaries of the rectangle to the
laser-beam axis, respectively. The choice of l1 and l2 depends on the laser power and welding velocity.

To solve Eq. (16) numerically on a rectangular difference grid Gh with the nodes {kh1, mh2} (k = 0, 1, . . . , n1

and m = 0, 1, . . . , n2), we use the scheme of the time-dependent method

T n+1
k,m − T n

k,m

τ
+ v

T n
k+1,m − T n

k−1,m

2h1

= ai

(T n+1
k−1,m − 2T n+1

k,m + T n+1
k+1,m

h2
1

+
T n

k,m−1 − 2T n
k,m + T n

k,m+1

h2
2

)
− ai

l2T
(T n+1

k,m − Ta), (29)

where ai = λi/cei. The starting point of the index k does not coincide with the starting point of the coordinate x.
Scheme (29), which is implicit in terms of the variable x and explicit in terms of z, is implemented in an

iterative manner for each m by marching over the index k along the coordinate axes x = const. In addition to
scheme (29), we also used a scheme of conventional approximation; the only difference of the latter scheme is that
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the value of T n+1
k,m in the second difference derivative with respect to z was taken at the time layer with the index

n+1 to enhance the diagonal prevalence of the matrix of the system of linear algebraic equations (29) to accelerate
the convergence of iterations.

The computational domain contains subdomains with different thermal diffusivities corresponding to the
liquid, solid, and two-phase states of the metal. Therefore, all subdomains are cyclically tested at each iteration,
and all lines with x = const are consecutively tested in terms of the index m inside a particular subdomain. The
iterations are terminated when the maximum absolute value of the residual of the difference equations becomes
smaller than a prescribe value in all nodes of the computational grid.

In the present implementation of the numerical algorithm, the derivatives in the boundary conditions are
approximated with the first-order accuracy. As soon as the grid node closest to the channel boundary inside the
computational domain (near-boundary nodes) are determined, the conditions at the channel boundary are assumed
to be shifted to these points. To determine from which point of the channel boundary the conditions are shifted
to a particular near-boundary node (as it is necessary to know the direction of the normal to the boundary at the
point considered for writing the conditions in the difference form), we determine the points of intersection of two
grid lines x = const and z = const passing through this node with the channel boundary. The direction of the
normal at the boundary point closest to the grid node considered is assumed to be the direction of the perpendicular
from this node to the chord passing through two points found at the boundary. The initial approximations of the
channel boundaries (frontal and rear ones) are chosen in the form of single-valued functions x = x0(z) in the entire
interval 0 < z < hc (hc is the channel depth). In this model, approaching the channel boundaries during the
iterative process (k = 1, 2, . . .) follows certain single-valued functions of the form x = xk(z). If there is no point
of intersection of the channel boundary with the grid line x = const passing through the considered node near the
frontal boundary of the channel in the vicinity of the upper boundary of the domain z = 0, we have to additionally
seek for the point of intersection of the grid line with the tangential line to the frontal boundary of the channel
drawn from the point z = 0. The derivative with respect to x in the node (xk, zm) near the frontal boundary is
approximated by the relation (Tk,m − Tk−1,m)/h1, and the derivative with respect to z is approximated by the
relation (Tk,m −Tk,m−1)/h2. This allows us to write the conditions on the channel boundary in the difference form.
The conditions on the rear wall of the channel are written in a similar manner. To speed up the iterations in the
time-dependent method, these conditions are supplemented by a dummy difference derivative of the solution in this
near-boundary node with respect to time as an additional term. To implement these conditions into the iterative
process (marching along the x axis), the unknowns at each current iteration are taken only in two neighboring nodes
in terms of x, whereas the coefficients at these unknowns and the remaining terms are borrowed from the previous
iteration. Thus, these conditions are simultaneously linearized with respect to unknowns calculated by marching
along a particular grid line x = const.

Similarly, the conditions of thermal balance on the boundaries of subdomains occupied by different phases
of the metal are approximated with the first-order accuracy.

The main aspect in the iterative process is the positions of the vapor-channel boundaries. As soon as they
are stabilized, the temperature in the vicinity of the vapor channel changes little during further iterations and is
almost independent of the changes in temperature at a certain distance from the channel in the computational
domain on the side of the rear wall of the channel. Experiments on convergence of the numerical solution with
the use of different grids show that the convergence is of the first order or better. The number of nodes in the
computations reached 3.5 · 106.

6. Analysis of Numerical Modeling Results. Some results of the numerical computations of
butt-welding of two plates made of the AL2 alloy (Al + 10% Si) are presented below. The initial data for
the physical quantities of the alloy were taken from [9, 10]: λ1 = 155.7 W/(m ·K), λ2 = 127.85 W/(m ·K),
λ3 = 100 W/(m ·K), c1 = 1000 J/(kg ·K), c2 = 1050 J/(kg ·K), c3 = 1100 J/(kg ·K), ρ1 = 2.6 · 103 kg/m3,
ρ2 = 2.45 · 103 kg/m3, ρ3 = 2.3 · 103 kg/m3, TA = 933 K, Tl0 = 862 K, Tl = 850 K, κ = 5.37
×105 J/kg, L = 1.11 ·107 J/kg, C10 = 10%, β1 = 7.1 K/%, k1 = 0.14, A = 0.65, rF = 10−4 m, ZF = 0, Tg = 293 K,
λg = 0.024 W/(m ·K), νg = 1.37 · 10−5 m2/sec, T1v = 2720 K, T2v = 2628 K, A1 = 33.294, B1 = 37,723.14 K,
A2 = 43.584, B2 = 63,590.782 K, P10 = P20 = 1 N/m2, σ = 0.57 N/m, ε1 = 0.176, ε2 = ε3 = 0.18, vg = 0.5 m/sec,
l = 0.1 m, and b = 0.55.
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Fig. 2. Partial pressures of the vaporized components of the alloy [aluminum (1) and silicon (2)]
and total pressure (3) versus temperature.
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Fig. 3. Temperature field in the computational domain: 1) T = 1207 K; 2) Tl0 = 862 K (beginning
of solidification); 3) Te = 850 K (end of solidification); 4) T = 517 K.

The results computed for the welding velocity v = 0.08 m/sec and radiation power W = 4 kW are plotted
in Figs. 2 and 3.

Figure 2 shows the total and partial pressures of Al and Si vapors as functions of temperature. This
dependence describes vaporization of the binary alloy considered with allowance for its chemical composition.

Figure 3 shows the isotherms in the welding bath and the shape of the vapor channel. To have a more clear
presentations, we use different scales in the x and z directions, because the length of the computational domain is
much greater than its height. Different intervals of temperature variation are indicated by the gray scale (higher
values are shown by less intense color). The vapor-channel region has the form of a black cone turned upside down.
It follows from the computations that the region with the highest temperature gradients is located in the vicinity
of the frontal boundary of the channel (in the melting region). The isothermal surfaces on the right of the channel
(in the region of cooling and solidification of the melt) are convex toward the direction of motion of the plates.
The curvature of these surfaces decreases with distance from the channel, i.e., the temperature levels off in the
direction across the plates. The liquidus and solidus positions determine the width of the two-phase zone l2 and
the residence time of the melt in the two-phase state (time of solidification) t2 = l2/(v cosχ), where χ is the angle
between the velocity vector of the plates and the normal to the tangential line to the solidification isotherm. For
the welding conditions considered, the mean values of these quantities over the z axis are l2 = 3.2 · 10−4 m and
t̄2 = 4 · 10−3 sec. Thus, the width of the transitional zone and the time of solidification have low values, which
is caused by rather high temperature gradients and, correspondingly, by a high rate of cooling of the solidifying
melt: v̄T = (Tl0 − Te)/t̄2 = 12/(4 · 10−3) = 3 · 103 K/sec. For this reason, a fine crystalline structure is formed
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in the crystallization region. To estimate the characteristic size of the dendrite cell d1, we use the semi-empirical
relation [13]: d1 = 1.13 · 10−4v

−1/2
T = 1.13 · 10−4/(3 · 103)1/2 = 2.06 · 10−6 m.

The height of the weld bed (see Fig. 3) formed in butt-welding in the region of the solidified metal is
approximately 0.15–0.20 mm, which is consistent in the order of magnitude with the experimental data of [5].

Conclusions. A two-dimensional mathematical model of thermophysical processes that occur in laser butt-
welding of plates made of a binary aluminum alloy with formation of a vapor channel has been developed. Based on
this model, a computer code has been proposed for modeling thermophysical regimes of welding. This code allows
determining the temperature fields in the article, the positions of the internal boundaries between the phases, the
saturated vapor pressure in the channel, and the shape and depth of the vapor channel. The results of the numerical
computations can be used to predict the size of zones occupied by different phases during the welding process and
the degree of dispersion of the crystalline grains. For given laser power and plate thickness, the code also determines
the optimal welding velocity that ensures formation of the liquid-phase region of a necessary volume without an
end-to-end vapor channel (breakdown of the article by the laser beam).

This work was supported by the Russian Foundation for Basic Research (Grant Nos. 06-01-00080-r and
05-01-00311).
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